Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Evaluation künstlicher neuronaler Netze für eine OOS-Erkennung
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Container Registry
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Dennis Willers
Evaluation künstlicher neuronaler Netze für eine OOS-Erkennung
Commits
adf7dca2
Commit
adf7dca2
authored
Jan 27, 2023
by
Dennis Willers
🏀
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Erweiterung um Optimierungverfahren und Aktivierungsfunktionen.
parent
54ccd927
Changes
5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
36 additions
and
11 deletions
+36
-11
main.py
main.py
+17
-7
config.yaml
ressources/config/config.yaml
+9
-2
activierungsfunktionEnum.py
src/enum/activierungsfunktionEnum.py
+2
-0
optimierungsverfahren.py
src/enum/optimierungsverfahren.py
+2
-1
defineKNN.py
src/knn/defineKNN.py
+6
-1
No files found.
main.py
View file @
adf7dca2
import
yaml
from
datetime
import
datetime
import
yaml
from
src.data.copyData
import
copy_images_with_exclusion
from
src.data.modelData
import
get_test_data
,
get_train_data
,
define_augmentation_rules
from
src.enum.activierungsfunktionEnum
import
Aktivierungsfunktion
...
...
@@ -12,7 +11,6 @@ from src.knn.defineKNN import define_model
from
src.result.createExcelFile
import
create_excel_result
,
get_excel_workbook
,
get_excel_worksheet
,
save_excel
,
\
average_evaluate_cross_validation
from
src.result.customCallback
import
CustomCallback
from
src.result.plotResult
import
plot_values
def
run_cross_validation
():
...
...
@@ -23,10 +21,14 @@ def run_cross_validation():
# Initialisieren der KNN-Modellbau Eigenschaften
for
optimization_method
in
Optimierungsverfahren
:
for
activation_function_
1
in
Aktivierungsfunktion
:
if
activation_function_
1
.
name
in
config
[
'knn'
][
'exception_activation_funktion_1'
]:
for
activation_function_
2
in
Aktivierungsfunktion
:
if
activation_function_
2
.
name
in
config
[
'knn'
][
'exception_activation_funktion_1'
]:
continue
for
activation_function_128
in
Aktivierungsfunktion
:
if
check_if_kombination_is_not_allowed
(
optimization_method
.
name
,
activation_function_128
.
name
,
activation_function_2
.
name
,
config
):
continue
model_evaluate_metrics
=
[]
training_duration_models
=
[]
workbook
=
get_excel_workbook
()
...
...
@@ -34,7 +36,7 @@ def run_cross_validation():
r
=
1
config_knn
=
ConfigKNN
(
excluded_folder
=
Markt
.
Kein_Markt
,
activation_function_1_units
=
activation_function_
1
,
activation_function_1_units
=
activation_function_
2
,
activation_function_128_units
=
activation_function_128
,
optimization_method
=
optimization_method
)
...
...
@@ -98,5 +100,13 @@ def run_model(config, config_knn, worksheet, r):
return
worksheet
,
r
,
evaluate_metrics
,
training_duration_model
def
check_if_kombination_is_not_allowed
(
opt
,
act128
,
act2
,
config
):
currentKombination
=
[
opt
,
act128
,
act2
]
ignoreKombinationList
=
config
[
'knn'
][
'ignoreKnnCombinations'
]
if
currentKombination
in
ignoreKombinationList
:
return
True
return
False
# entry point
run_cross_validation
()
run_cross_validation
()
\ No newline at end of file
ressources/config/config.yaml
View file @
adf7dca2
bilder
:
# original_path: "assets/Bilder/Datengrundlage-Reduziert-Test/"
#
original_path: "assets/Bilder/Datengrundlage/"
original_path
:
"
assets/Bilder/Datengrundlage-Augmentiert/"
original_path
:
"
assets/Bilder/Datengrundlage/"
#
original_path: "assets/Bilder/Datengrundlage-Augmentiert/"
knn_path
:
"
assets/Bilder/AktuelleTrainingsUndTestdaten/"
knn
:
epochs
:
10
exception_activation_funktion_1
:
[
'
ReLU'
]
ignoreKnnCombinations
:
[
[
'
SGD'
,
'
ReLU'
,
'
sigmoid'
],
[
'
SGD'
,
'
sigmoid'
,
'
sigmoid'
],
[
'
Adam'
,
'
ReLU'
,
'
sigmoid'
],
[
'
Adam'
,
'
sigmoid'
,
'
sigmoid'
]
]
result
:
plot_path
:
"
ressources/results/plot/"
excel_path
:
"
ressources/results/excel/"
src/enum/activierungsfunktionEnum.py
View file @
adf7dca2
...
...
@@ -4,3 +4,5 @@ from enum import Enum
class
Aktivierungsfunktion
(
Enum
):
ReLU
=
0
,
sigmoid
=
1
,
tanh
=
2
,
softmax
=
3
src/enum/optimierungsverfahren.py
View file @
adf7dca2
...
...
@@ -3,4 +3,5 @@ from enum import Enum
class
Optimierungsverfahren
(
Enum
):
SGD
=
0
,
Adam
=
1
Adam
=
1
,
Ftrl
=
2
src/knn/defineKNN.py
View file @
adf7dca2
...
...
@@ -38,6 +38,10 @@ def get_next_layer(units, activation_function, flat_or_dense):
kernel_initializer
=
'he_uniform'
)(
flat_or_dense
)
if
activation_function
==
Aktivierungsfunktion
.
sigmoid
:
return
tf
.
keras
.
layers
.
Dense
(
units
,
activation
=
activation_function
.
name
)(
flat_or_dense
)
if
activation_function
==
Aktivierungsfunktion
.
tanh
:
return
tf
.
keras
.
layers
.
Dense
(
units
,
activation
=
activation_function
.
name
)(
flat_or_dense
)
if
activation_function
==
Aktivierungsfunktion
.
softmax
:
return
tf
.
keras
.
layers
.
Dense
(
units
,
activation
=
activation_function
.
name
)(
flat_or_dense
)
return
None
...
...
@@ -46,5 +50,6 @@ def get_optimization_method(optimization_method):
return
tf
.
keras
.
optimizers
.
SGD
(
learning_rate
=
0.001
,
momentum
=
0.9
)
if
optimization_method
==
Optimierungsverfahren
.
Adam
:
return
tf
.
keras
.
optimizers
.
Adam
(
learning_rate
=
0.001
)
if
optimization_method
==
Optimierungsverfahren
.
Ftrl
:
return
tf
.
keras
.
optimizers
.
Ftrl
(
learning_rate
=
0.001
)
return
None
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment